How single-cell biology is reshaping our understanding of pulmonary fibrosis

Jonathan Kropski MD Associate Professor Division of Allergy, Pulmonary and Critical Care Medicine Vanderbilt University Medical Center

Disclosures

- Grants/Contracts: NIH/NHLBI, Department of Defense, Department of Veterans Affairs, ThreeLakes Foundation, Boehringer Ingelheim, Bristol-Myers-Squibb
- SAB/Consulting: APIE, ARDA

Idiopathic Pulmonary Fibrosis is an awful disease

Current IPF therapies modestly slow disease progression and are poorly tolerated

Richeldi et al. NEJM 2014.

Epithelial injury and dysfunctional repair is central to IPF pathogenesis – but how?

Step 1: Building the IPF Cell Atlas

Step 1: Building the IPF Cell Atlas

114,396 cells20 PF Lungs10 Control

Habermann et al. *Science Advances* 2020. 6:eaba1972

Step 1: The IPF Cell Atlas – novel progenitor cells

Habermann et al. *Science Advances* 2020. 6:eaba1972

Step 1: The IPF Cell Atlas

KRT17+ "aberrant basaloid cells" exhibit most of the "hallmarks" of IPF lungs

Step 2: Integrating genetics and single cell genomics

Natri et al. Nature Genetics 2024.

A subset of eQTL have disease-context specific regulatory effects

Natri et al. Nature Genetics 2024.

Disease-interacting eQTL are enriched within motifs for stress-induced transcription factors

Step 3: Modeling disease biology ex-vivo

FLEX-seq resolves perturbation conditions that phenocopy IPF-associated cellular reprogramming

Step 4: Leveraging archival samples

Early IPF High Risk Cohort@VUMC

Defining the Molecular Pathogenesis of Early Pulmonary Fibrosis

Nick Banovich Annika Vannan

Spatial transcriptomics

Unsupervised hierarchical clustering distinguishes ILA progression outcomes

UMAP1

FLEX-seq of archival FFPE blocks

Step 5: Spatial contextualization of diseaseemergent cellular phenotypes

Vannan et al. bioRxiv 2023. [in-revision]

Deciphering cellular diversity of pathologic features

Imaging-based spatial methods allow use of cellagnostic methods to explore "niche" evolution

Vannan et al. bioRxiv 2023. [in-revision]

Characterizing progressive airspace dysregulation

Vannan et al. *bioRxiv* 2023. [in-revision]

Aberrant epithelial cell detachment on the "leading edge" of fibrosis

One Xexium slide generated data on more cells than our entire sc-eQTL dataset

Summary Decoding Cel	ll Segmentation Analysis	Image QC			
Key Metrics ③					
628,8 Number of cells of	60 detected Media	80 an transcripts per cell	184.7 Nuclear transcripts per 100 µm²	98,240,321 Total high quality decoded transcripts	
Custom panel: 34 TMA – 17 samples	13 genes s Seg	Segmentation Methods 💿			
	Cells	Cells segmented by boundary stain		22,138 (19.4%)	
	Cells	Cells segmented by interior RNA stain		478,375 (76.1%)	
	Cells	segmented by nucleu	s expansion (5.0 µm) 2	28,347 (4.5%)	
	Total	cells detected	e	528,860 (100%)	

Cellbound looks promising to improve segmentation

Cellbound enhances segmentation fidelity, especially for irregularly shaped cells

Acknowledgements

- Vanderbilt Lung Fibrosis Research group
 - Margaret Salisbury, MD
 - Scott McCall MD, PhD
 - Jason Gokey, PhD
 - Ana Serezani, PhD
 - Erin Wilfong, MD/PhD
 - Carla Calvi

•

- Taylor Sherrill
- Merced Malabanan, PhD
- Ujjal Singha, PhD
- Frank Kamga, PhD
- Rafi Fernandez, MD, PhD
- David Nichols
- David Han
- Isabella Gaona
- Luca DiGiovanni
- Abigail Dietrich
- Daphne Mitchell
- Lisa Lancaster & ILD clinical team
- Coordinators and study nurses

VUMC collaborators

- Jennifer Sucre (Neonatology) & BOLD Center
- Ciara Shaver, Julie Bastarache, Lorraine Ware (Pulmonary)
- Matthew Bacchetta (Cardiac Surgery) & Lung Transplant Program
- Bradley Richmond (Pulmonary)
- John Phillips & Joy Cogan (Pediatric Genetics)
- Qi Liu & colleagues (Biostatistics)
- VANTAGE
- Sam Bailin, John Koethe, Celestine Wanjalla (ID)
- Vineet Agrawal, Anna Hemnes (Pulmonary HTN)
- Ravi Shah (Cardiology)
- U. Michigan
 - Tim Blackwell
 - Yang Liu
- Translational Genomics Research Institute
 - Nick Banovich
 - Annika Vannan
- St. Vincent's Research Institute (Melbourne)
 - Davis McCarthy
 - Ruiqian Lyu
- Cornell
 - Anna Podolanczuk
 - Renat Shaykiev

Pulmonary Fibrosis

THREE LAKES FOUNDATION

Vanderbilt Institute for Clinical and Translational Research

Boehringer Ingelheim, Cellgene/BMS

<u>www.kropskilab.org</u> @JKropski